Les fondamentaux du Machine Learning avec Python Mixte : présentiel / à distance
Dernière mise à jour : 29/04/2025
Description

Module 1 : Qu'est-ce que le Machine Learning ?
- Introduction au Machine Learning
- Exemples d'utilisation dans différents secteurs
- Identification des problématiques adressées par le Machine Learning
- Les différents types de Machine Learning : régression, classification, supervisé, non supervisé
Module 2 : Les librairies Python scientifique :
- Les basiques : Numpy, pandas, et matplotlib
- La librairie Scikit-learn
- Les notebooks Jupyter
Module 3 : Algorithmes de Machine Learning supervisés, théorie et pratique :
- Régression linéaire polynomiale
- Régression logistique
- K plus proches voisins (KNN)
- Arbres de décision
- Random Forests
Module 4 : Evaluer un modèle prédictif :
- Comment mesurer la qualité d'un modèle
- Principaux critères d'évaluation
- Créer son propre critère d'évaluation
Module 5 : Optimiser ses modèles prédictifs :
- Grille d'optimisation
- Recherche aléatoire
- Optimisation de la valeur seuil
- Eviter l'overfitting
Module 6 : Processus projet :
- Les étapes d'un projet de Machine Learning
- Déployer le modèle en production
- Superviser et mettre à jour le modèle
Module 7 : Algorithmes de Machine Learning non supervisés :
- Clustering : K-means et DBScan
- Détection d'anomalie : Isolation Forests
Objectifs de la formation
Dans cette formation vous apprendrez à :
- Analyser et modéliser des jeux de données
- Entraîner un modèle prédictif et à le déployer.
L'alternance de théorie et de pratique permet de :
- Comprendre les algorithmes utilisés
- Constater leurs principales propriétés sur des jeux de données réels.
A l'issue de la formation vous saurez :
- Identifier les cas d'usage exploitables par le Machine Learning,
- Comprendre le processus projet à mettre en œuvre
- Créer et utiliser vos premiers modèles.
Public visé
Prérequis
Modalités pédagogiques
Session dispensée en présentiel ou téléprésentiel, selon la modalité inter-entreprises ou intra-entreprises sur mesure.
La formation est animée par un(e) formateur(trice) durant toute la durée de la session et présentant une suite de modules théoriques clôturés par des ateliers pratiques validant l'acquisition des connaissances. Les ateliers peuvent être accompagnés de Quizz.
L'animateur(trice) présente la partie théorique à l'aide de support de présentation, d'animation réalisée sur un environnement de démonstration.
En présentiel comme en téléprésentiel, l'animateur(trice) accompagne les participants durant la réalisation des ateliers.
Moyens et supports pédagogiques
Cadre présentiel
Salles de formation équipées et accessibles aux personnes à mobilité réduite.
- Un poste de travail par participant
- Un support de cours numérique ou papier (au choix)
- Un bloc-notes + stylo
- Vidéoprojection sur tableau blanc
- Connexion Internet
- Accès extranet pour partage de documents et émargement électronique
Cadre téléprésentiel
Session dispensée via notre solution iClassroom s'appuyant sur Microsoft Teams.
- Un compte Office 365 par participant
- Un poste virtuel par participant
- Un support numérique (PDF ou Web)
- Accès extranet pour partage de documents et émargement électronique
Modalités d'évaluation et de suivi
Avant
Afin de valider le choix d'un programme de formation, une évaluation des prérequis est réalisée à l'aide d'un questionnaire en ligne ou lors d'un échange avec le formateur(trice) qui validera la base de connaissances nécessaires.
Pendant
Après chaque module théorique, un ou des ateliers pratiques permettent la validation de l'acquisition des connaissances. Un Quizz peut accompagner l'atelier pratique.
Après
Un examen de certification si le programme de formation le prévoit dans les conditions de l'éditeur ou du centre de test (TOSA, Pearson Vue, ENI, PeopleCert)
Enfin
Un questionnaire de satisfaction permet au participant d'évaluer la qualité de la prestation.